2014 COMMISSION MEETING SCHEDULE

July 8
August 26
September (no meeting)
October 14
November 11
December 9

WATER QUALITY REPORT 2014
A Naturally Clean Water Source
OUC’s water comes from the Lower Floridan Aquifer, an underground reservoir that in many places is a quarter of a mile below the earth’s surface. The aquifer is fed by rainwater that is filtered through hundreds of feet of rock, undergoing a natural cleansing process. After pumping water from the aquifer to our water plants, OUC carefully treats the water to ensure its safety and enhance its quality.

Using Ozone to Produce Great Tasting Water
OUC uses ozone treatment at its seven water treatment plants to produce high quality, great tasting tap water, proudly dubbed H2OUC. Ozone is the strongest disinfectant available and reduces the amount of chlorine that must be added. The result is clean, fresh tasting water with a sparkling appearance. As required by law, we still add chlorine to our water to maintain its high quality as it flows through pipes to customer taps. Fluoride is added to promote healthy teeth. We also add sodium hydroxide to prevent copper and lead from leaching into the drinking water from customers’ own plumbing, which is the primary source of these elements in our area.

Securing Our Water Facilities
All OUC water plants are equipped with state-of-the-art security systems that include intrusion-detection systems, alarms, cameras and security fences around the perimeter of the properties. Armed security guards and law enforcement officers regularly patrol the facilities. You can be assured that OUC remains vigilant in monitoring and protecting our water facilities. The safety of your water is our highest priority.

About OUC—The Reliable One
OUC is a municipal utility owned by the citizens of Orlando and governed by a board of commissioners. The utility provides electric and water services to nearly 230,000 customers in Orlando, St. Cloud and parts of unincorporated Orange and Osceola counties. OUC is the second largest water utility in the state, serving a population of about 422,000.
To ensure we continue to deliver great-tasting, clean water to our customers, OUC is teaching the next generation about the importance of conserving and protecting Florida’s water supply through classroom programs such as the Water Color Project and the A.W.E.S.O.M.E. (Alternative Water & Energy Supply; Observation, Methods & Education) Project.

For the past seven years, OUC has been encouraging students to use their creativity to promote conservation via the Water Color Project. Elementary students compete to have their artwork featured in an annual calendar, while high school students decorate water-themed rain barrels for judging.

The A.W.E.S.O.M.E. Project delivers an interactive lab to fifth grade classrooms. Students learn about alternate sources and where their water comes from by building an aquifer.

OUC has taken a leadership role in the search for innovative, reliable solutions. OUC also is focusing on reclaimed water—highly treated wastewater safe for human contact—to supply anticipated landscape and lawn irrigation needs. Through regional partnerships with the City of Orlando and other Central Florida water utilities, OUC is developing alternative water sources to meet future drinking water demand.

Even small steps add up to big savings, lowering your monthly utility bill while preserving our water supply. Here are a few to start you saving:

- Water your lawn before 10 a.m. or after 4 p.m. to minimize the amount lost to evaporation
- Water just once a week in cooler months and twice a week in warmer months to maintain healthy grass
- Water your lawn for just 30–45 minutes per session
- Repair leaking faucets and toilets
- Install water-saver shower heads and take shorter showers

For more ways to save water, visit conservefloridawater.org.

WHERE YOUR WATER COMES FROM

Well pumps at OUC’s water treatment plants draw water from a natural underground reservoir called the Lower Floridan Aquifer. After being sent through ozone treatment basins, the water is treated with chlorine and fluoride. The water is then pumped to a finished water storage tank, where it waits for distribution to residential, commercial and industrial customers.

Currently, OUC delivers nearly 28 billion gallons of water annually to customers across a 200 square mile territory.
WATER QUALITY TEST RESULTS

ALL TEST RESULTS WELL BELOW ALLOWABLE LEVELS

As shown in the following tables, the water that OUC delivers to your tap surpasses all federal and state requirements for safe drinking water. Of the more than 135 regulated and unregulated substances for which we test annually, only several have been detected, and the detection levels were well below allowable levels.

Except where otherwise noted, the following results are from tests conducted in March and April of 2012 (the most recent available in accordance with DEP regulations).

Inorganic Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimony (ppb)</td>
<td>03/2012</td>
<td>N</td>
<td>2</td>
<td>ND-2</td>
<td>6</td>
<td>6</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Asbestos (MFL)</td>
<td>07/2011</td>
<td>N</td>
<td>0.75</td>
<td>ND-0.75</td>
<td>7</td>
<td>7</td>
<td>Decayed asbestos cement water mains, erosion of natural deposits</td>
</tr>
<tr>
<td>Barium (ppm)</td>
<td>03/2012</td>
<td>N</td>
<td>0.032</td>
<td>0.009-0.032</td>
<td>2</td>
<td>2</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Fluoride (ppm)</td>
<td>03/2012</td>
<td>N</td>
<td>0.730</td>
<td>0.31-0.73</td>
<td>4</td>
<td>4</td>
<td>Erosion of natural deposits; water additive that promotes strong teeth</td>
</tr>
<tr>
<td>Lead (point of entry) (ppb)</td>
<td>03/2012</td>
<td>N</td>
<td>1</td>
<td>ND-1</td>
<td>N/A</td>
<td>AL (15)</td>
<td>Erosion of natural deposits</td>
</tr>
<tr>
<td>Nitrate (ppm)</td>
<td>02/2013</td>
<td>N</td>
<td>0.13</td>
<td>ND-0.13</td>
<td>10</td>
<td>10</td>
<td>Runoff from fertilizer, erosion of natural deposits</td>
</tr>
<tr>
<td>Sodium (ppm)</td>
<td>03/2012</td>
<td>N</td>
<td>13.9</td>
<td>7.18-13.9</td>
<td>N/A</td>
<td>160</td>
<td>Salt water intrusion; leaching from soil</td>
</tr>
</tbody>
</table>

Radioactive Contaminants

<table>
<thead>
<tr>
<th>Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Likely Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha Emitters (pCi/L)</td>
<td>01/2008</td>
<td>N</td>
<td>1.5</td>
<td>ND-1.5</td>
<td>0</td>
<td>15</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Stage 1 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Possible Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate (ppb)</td>
<td>1/13-12/13</td>
<td>N</td>
<td>4*</td>
<td>ND-14</td>
<td>MCLG = 0</td>
<td>MCL=10</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Chlorine (ppm)</td>
<td>1/13-12/13</td>
<td>N</td>
<td>1.08</td>
<td>0.1-2.2</td>
<td>MRDLG=4</td>
<td>MRDL=4</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

* Compliance levels are based on running annual averages.

Stage 2 Disinfectants and Disinfection By-Products

<table>
<thead>
<tr>
<th>Disinfectant or Contaminant and Unit of Measurement</th>
<th>Dates of Sampling (mo/yr)</th>
<th>MCL or MRDL Violation Y/N</th>
<th>Level Detected</th>
<th>Range of Results</th>
<th>MCLG</th>
<th>MCL</th>
<th>Possible Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAAS (ppb) Haloacetic Acids</td>
<td>2/13-11/13</td>
<td>N</td>
<td>29**</td>
<td>10-37</td>
<td>N/A</td>
<td>MCL=60</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>TTHMs (ppb) Total Trihalomethanes</td>
<td>2/13-11/13</td>
<td>N</td>
<td>65**</td>
<td>30-71</td>
<td>N/A</td>
<td>MCL=80</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

** Compliance levels are based on locational running annual averages.
MCL: Maximum Contaminant Level. The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

ppm: Parts Per Million. One part per million corresponds to 1 cent in $10,000.

MRDL: Maximum Residual Disinfectant Level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

AL: Action Level. The concentration of a contaminant that, if exceeded, triggers treatment or other requirements that a water system must follow.

pCi/L: Picocuries Per Liter. A measure of the radioactivity in water.

MFL: Million Fibers Per Liter. A measure of the presence of asbestos fibers that are longer than 10 micrometers.

N/A: Not Applicable. Indicates that the substance was not found by laboratory analysis.

ND: Not Detected. Indicates that the substance was not found by laboratory analysis.

KEYS TO ABBREVIATIONS

MCLG: Maximum Contaminant Level Goal. The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDLG: Maximum Residual Disinfectant Level Goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

RESULTS OF COPPER AND LEAD SAMPLING AT CUSTOMER TAPS

The following results are from tests conducted between June 1 and Sept. 30, 2011 (the most recent available in accordance with DEP regulations). The tests confirm that the levels of lead and copper in tap water sampled in homes were below the Action Level (AL).

Contaminant and Unit of Measurement

<table>
<thead>
<tr>
<th>Dates of sampling (mo/yr)</th>
<th>AL Exceeded (Y/N)</th>
<th>90th Percentile Result</th>
<th>Number of sites exceeding the AL</th>
<th>MCLG</th>
<th>AL</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper (tap water) (ppm)</td>
<td>6/11-9/11</td>
<td>N</td>
<td>0.48</td>
<td>0</td>
<td>1.3</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives</td>
</tr>
<tr>
<td>Lead (tap water) (ppb)</td>
<td>6/11-9/11</td>
<td>N</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>Corrosion of household plumbing systems; erosion of natural deposits</td>
</tr>
</tbody>
</table>

In 90 percent of the homes sampled, the level of copper was 0.48 ppm or less, and the level of lead was 4 ppb or less.

During 2013, a minimum of 180 water samples per month was collected throughout OUC’s water distribution system and analyzed for Total Coliform Bacteria.

The following results are from tests conducted between Jan. 1 and Dec. 31, 2013 (the most recent available in accordance with DEP regulations).
More About Lead and Copper
The primary source of lead and copper in tap water is customer plumbing. These elements can possibly leach into the water from a building’s plumbing through corrosion if the water has been standing in the pipes for several hours. To prevent corrosion, OUC has implemented system-wide corrosion-control treatment where sodium hydroxide is added to the water to increase its pH and thus prevent corrosion.

Buildings at risk for lead or copper in the water are those that have lead services or that have lead solder in copper pipes. If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. OUC is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking.

If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline at 1-800-426-4791 or online at www.epa.gov/safewater/lead.

Constantly Testing Your Water
After an on-site assessment by the Florida Department of Health and successful completion of the latest round of proficiency testing, chemists at OUC’s Water Quality Laboratory perform more than 20,000 chemical and bacteriological tests annually to ensure the quality and safety of OUC’s drinking water. With the latest accreditation, customers can continue to enjoy OUC’s award-winning water with confidence, knowing that the water is tested regularly and surpasses the highest quality standards. For more information about OUC’s drinking water, call our Water Quality Laboratory at 407-434-2549 to talk to a water quality professional. Information also is available online at www.ouc.com/water.

Source Water Assessment
The latest source water assessment was completed in 2013 and the report is available online at www.dep.state.fl.us/swapp.

EPA STATEMENT ABOUT WATER RESOURCES, CONTAMINANTS

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- **Microbial contaminants**, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations and wildlife.
- **Inorganic contaminants**, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial or domestic wastewater discharges, oil and gas production, mining or farming.
- **Pesticides and herbicides**, which may come from a variety of sources such as agriculture, urban stormwater runoff and residential uses.
- **Organic chemical contaminants**, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production and can come from gas stations, urban stormwater runoff and septic systems.
- **Radioactive contaminants**, which can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water, which must provide the same protection for public health.

All drinking water, including bottled water, may be reasonably expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the U.S. Environmental Protection Agency’s Safe Drinking Water Hotline at 1-800-426-4791.

WHAT THE EPA SAYS ABOUT MCLS AND HEALTH EFFECTS

The Maximum Contaminant Levels (MCLs) established by the EPA are set at very stringent levels. To understand the possible health effects described for many regulated constituents, a person would have to drink two liters of water every day at the MCL level for a lifetime to have a one-in-a-million chance of having the described health effect.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised people such as those with cancer undergoing chemotherapy, those who have undergone organ transplants, those with HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk for infections. These people should seek advice from their health care providers about drinking water. EPA and Center for Disease Control and Prevention guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbial contaminants are available from the EPA Safe Drinking Water Hotline, 1-800-426-4791.